连云港专业酸性球团矿粉熔融热解处理过程将有机固废热解和金属氧化物的还原及金属与炉渣熔融相结合,在固废处理领域应用先例,熔融热解过程中有机固废彻底分解,金属氧化物终形成铁水和炉渣。熔融处理的废物类型主要包括含铁废物、含碳废物、含熔剂废物及部分有机废物,主要有渣钢、含铁尘泥(包括烧结、炼铁、炼钢及轧钢系统收集的除尘灰和连铸氧化铁皮等)、转炉渣、劣质金属化球团、劣质废钢等一般固废。专业酸性球团矿粉加工部分物料进入熔融炉前需要进行预处理,根据不同固废的类型采用不同工艺、粉尘、污泥等粉料经过配料、混合、造球,干燥之后进行预还原成为有一定强度的金属化球团或直接添加球团粘合剂压球固结,形成一定强度后进行熔融处理。钢渣等经过破碎后直接加入熔融炉。
连云港专业酸性球团矿粉转炉尾渣经过筛分处理后,将粒度适合的尾渣经皮带运输至转炉顶部高位料仓,溅渣护炉结束之后,将尾渣放入炉内,加入废钢。利用炉内温度提前尾渣预热,摇动转炉去除水分,加入铁水,开始吹炼。根据吹炼情况,加入尾渣进行快速化渣并预防返干,由可以替代部分造渣料,吹炼过程可适当减少石灰、萤石、白云石及铁粉球团的加入量。专业酸性球团矿粉加工显示加入尾渣与常规吹炼,终点成分几乎一样的,均可达到钢种的要求。主要是由于尾渣中含有转炉吹炼过程造渣所需要的氧化铁与氧化钙,尾渣熔化后参与常规吹炼熔池内的化学反应,达到除去有害元素的目的。
连云港专业酸性球团矿粉球团孔隙率是影响球团抗压强度的主要原因之一,因此对含碳球团焙烧后的孔隙率进行考察,以探明含碳球团焙烧初期强度机速下降的原因。专业酸性球团矿粉加工综合对氧化球团还原过程强度的变化研究,含碳球团焙烧初期强度的急速降低是由球团内部孔隙率增大引起的,3-5min时孔隙率继续增大,但球团强度开始缓慢提高,由于随着焙烧时间的延长,球团外部有金属铁生成,烧结现象明显,球团外部金属铁增多。球团压碎后发现金属铁相互连接并逐渐向内部蔓延,使得球团收缩孔隙率下降,抗压强度明显提高。
连云港专业酸性球团矿粉高炉是紧密竖炉,其内炉料(矿石、焦炭、熔剂)在自重作用下下降,同时由焦炭和喷吹的煤粉在风口前燃烧形成的煤气在鼓风机压力下上升,这种逆流运动中,使得炉料充分预热,进行还原、熔融、渗碳等一系列物理、化学过程。含铁物料还原过程中,部分参与间接还原(放热反应),部分参与直接还原(吸热反应),因此直接还原比例(直接还原度)与高炉炼铁工序能耗紧密相关,实践表明:高炉内物料约50%参与直接还原。专业酸性球团矿粉加工此外,高炉是个高效的能源转化器,即:入炉的焦炭部分燃烧形成煤气,这部分煤气参与间接还原后形成高炉煤气,燃烧其为热风炉供热后,再为高炉供高温热风。热风热量是燃烧约45%高炉煤气而得,因此部分约占高炉炼铁所需热量的20%,高炉煤气得到充分回收利用。
连云港专业酸性球团矿粉随着吹炼炉次的增加,钢水的搅拌和对炉衬的冲刷,常规吹炼炉次,炉衬均有侵蚀,厚度会减小,渣线附近的炉衬厚度减小明显,炉底的厚度有略微上涨,炉底的厚度相对炉壁而言,较好控制。添加尾渣替代部分造渣料的炉次,随着吹炼炉次的累计,炉衬厚度大致可维持不变。专业酸性球团矿粉加工在常规的冶炼过程中,随着机械的冲击、钢液的搅拌冲刷,急冷急热,化学反应等作用,炉衬实在逐渐被侵蚀磨损的。以目前手段,物理作用的冲击磨损难以避免,化学反应的角度降低侵蚀程度是可行的。
连云港专业加工高炉炼铁铁矿石有45%以上是间接还原。间接还原不需要能量,是放热反应,且反应是在炉内进行。熔融还原时利用多级流化床,实现铁矿石的部分还原,需要一定外来能量。这样,矿石还原的能量就要高。目前,熔融还原还不能完全脱离对焦炭的需求,焦化工序的能耗还要计入熔融还原的能耗。专业酸性球团矿粉加工高炉流程炼铁能耗有优势。高炉流程产品是热铁水,直接还原产品是固态海绵铁,海绵铁要变成热铁水需要能量,所以高炉流程炼铁在能源消耗上有优势。