山东专供碱性球团矿粉转炉尾渣经过筛分处理后,将粒度适合的尾渣经皮带运输至转炉顶部高位料仓,溅渣护炉结束之后,将尾渣放入炉内,加入废钢。利用炉内温度提前尾渣预热,摇动转炉去除水分,加入铁水,开始吹炼。根据吹炼情况,加入尾渣进行快速化渣并预防返干,由可以替代部分造渣料,吹炼过程可适当减少石灰、萤石、白云石及铁粉球团的加入量。专供碱性球团矿粉加工显示加入尾渣与常规吹炼,终点成分几乎一样的,均可达到钢种的要求。主要是由于尾渣中含有转炉吹炼过程造渣所需要的氧化铁与氧化钙,尾渣熔化后参与常规吹炼熔池内的化学反应,达到除去有害元素的目的。
山东专供碱性球团矿粉取一定量的原矿配入20%的褐煤,适量的水以及不同种类的粘结剂进行压球实验。实验表明,粘结剂在冷固球团中起着重要作用,它能在常温或特定条件下在球团内部发生一系列物理化学变化,从而起到粘结作用,提高球团强度。试验所用粘结剂包括无机粘结剂和有机粘结剂两类。专供碱性球团矿粉加工不同粘结剂的球团干球抗压强度差别较大,但在高温配烧过程中强度变化趋势基本一致,在焙烧初期0-2min时球团抗压强度降低。2-4min时球团抗压强度变化速度减缓,4-8min时球团强度又逐渐升高。从单一粘结剂试验中发现不同的粘结剂对提高湿球和干球的落下和抗压强度有不同效果,为此考虑使用复合粘结剂,利用各种粘结剂优点。
山东专供碱性球团矿粉炼铁时用的铁矿石,主要有赤铁矿石和磁铁矿石,在铁矿石中含有无用的脉石,主要成分是二氧化硅。炼铁时,被还原出的铁在高温下变成液体,温度在1500摄氏度左右,原燃料中的氧化硅、氧化铝等酸性氧化物熔点很高,不可在高炉中熔化。即便有机会组成较低熔点的化合物,其熔化温度仍很高,在高炉中只能形成一些非常粘稠的物质,造成渣、铁部分,难以流动。为了去除这种渣滓,选用石灰石作熔剂,石灰石在高温下分解成氧化钙和二氧化碳。专供碱性球团矿粉加工尽管熔剂中氧化钙和氧化镁自身熔点很高,但能同氧化硅和氧化铝结合成低熔点化合物,在高炉内足以熔化,形成流动性良好的炉渣,按相对密度与铁水分开,氧化钙在高温下与二氧化硅反应生成熔点比铁水温度还低的硅酸钙,与氧化铝生成硅酸钙,打开高炉上的出渣口,。液态硅酸钙先流出去,固成高炉渣,粉磨后形成矿渣粉,应用于混凝土中。
山东专供碱性球团矿粉钢铁生产过程里产生的高炉渣、钢渣等主要用于生产矿渣微粉、水泥熟料、混凝土有添加剂和砖块等,其主要资源化利用新技术有高炉渣生产微晶玻璃、热态高炉渣制备矿渣棉、高炉渣生产硅肥及高炉渣修复生态环境,高炉渣利用率达到了95%以上。钢渣主要用于筑路、工程回填料、场内循环利用及用于水泥或建材,钢渣综合利用率约为30%。专供碱性球团矿粉加工转底炉生产的金属化球团产品主要进入高炉或炼钢工序,但由于转底炉金属化球团中硫含量较高、含铁量较低、金属化率较低及杂质含量较高,质量远远低于炼钢用直接还原铁的标准,这并非高炉的理想原料。
山东专供碱性球团矿粉球团孔隙率是影响球团抗压强度的主要原因之一,因此对含碳球团焙烧后的孔隙率进行考察,以探明含碳球团焙烧初期强度机速下降的原因。专供碱性球团矿粉加工综合对氧化球团还原过程强度的变化研究,含碳球团焙烧初期强度的急速降低是由球团内部孔隙率增大引起的,3-5min时孔隙率继续增大,但球团强度开始缓慢提高,由于随着焙烧时间的延长,球团外部有金属铁生成,烧结现象明显,球团外部金属铁增多。球团压碎后发现金属铁相互连接并逐渐向内部蔓延,使得球团收缩孔隙率下降,抗压强度明显提高。